MODEL NO. ENP-7100-S SERIES(SA,SD,SH,SJ,SF) (ACTIVE PFC) This specification describes the requirements of **300W,350W,400W,450W** with full range voltage, switching power supply with a Micro-ATX(SFX-1.0&1.1) form-factor and SFX 12V, +5V standby voltage, remote on/off. (SD,SH series have safety,SA,SJ,SF series no safety) ## 1.0 AC INPUT ## 1.1 AC input requirements The input voltage, current, and frequency requirements for continuous operation are stated belo Table 1 AC Input Line Requirements | Parameter | Min | Nom | Max | Unit | |---------------|-----|---------|-----|--------| | Vin | 90 | 100-240 | 264 | VACrms | | Vin Frequency | 47 | 6050 | 63 | Hz | | lin(300W) | | 4.02.0 | | Arms | | lin(350W) | | 5.02.5 | | Arms | | lin(400W) | | 6.03.0 | | Arms | | lin(450W) | | 7.03.5 | | Arms | Power factor correction (PF)>0.90 at full load. ## 1.2 Inrush current regulation The power supply must meet inrush requirements for any rated AC voltage, during turn on at any phase of AC voltage, during a single cycle AC dropout condition, during repetitive ON/OFF cycling of AC, and over the specified temperature range (Top). The peak inrush currer shall be less than the ratings of its critical components (including input fuse, bulk rectifiers, and surge limiting device). #### 2.0 DC OUTPUT #### 2.1 DC voltage regulation | Parameter | Range | Min | Nom. | Max | Unit | |-----------|-------|-------|-------|-------|-------| | +3.3V | ±5% | +3.14 | +3.3 | +3.47 | Volts | | +5V | ±5% | +4.75 | +5.0 | +5.25 | Volts | | +12V | ±5% | +11.4 | +12.0 | +12.6 | Volts | | -12V | ±10% | -10.8 | -12.0 | -13.2 | Volts | | +5VSb | ±5% | +4.75 | +5.0 | +5.25 | Volts | (1) At no load, 3.3V output +/-5% regulation limits do not apply. AUDIT: 李復新 CHECK: DESIGN: H X X ENP7100-S SPEC REV: 3.0 1 OF 11 2012/02/16 #### 2.2 LOAD RANGE # 2.2.1 Load Range # 300W(單組) | Parameter | Min | Nom. | Max | Peak | Unit | |-----------|-----|------|-----|------|------| | +3.3V | 0 | - | 15 | | Amps | | +5V | 0 | 1 | 14 | | Amps | | +12V | 0 | - | 25 | | Amps | | -12V | 0 | - | 0.3 | | Amps | | +5VSb | 0 | - | 2.5 | | Amps | - (1) The maximum combined load on +3.3V and +5V outputs shall not exceed 90W. - (2) Maximum continuous total DC output power should not exceed 300W. ## 300W(雙組) | Parameter | Min | Nom. | Max | Peak | Unit | |-----------|-----|------|-----|------|------| | +3.3V | 0 | - | 15 | | Amps | | +5V | 0 | ı | 14 | | Amps | | +12V1 | 0 | • | 16 | 18 | Amps | | +12V2 | 0 | ı | 16 | 18 | Amps | | -12V | 0 | - | 0.3 | | Amps | | +5VSb | 0 | - | 2.5 | | Amps | - (1) The maximum combined load on +3.3V and +5V outputs shall not exceed 90W. - (2) The maximum combined load on +12V1 and +12V2 outputs shall not exceed 300W. - (3) Maximum continuous total DC output power should not exceed 300W. ## 2.2.2 Load Range # 350W(單組) | Parameter | Min | Nom. | Max | Peak | Unit | |-----------|-----|------|-----|------|------| | +3.3V | 0 | 1 | 15 | | Amps | | +5V | 0 | 1 | 14 | | Amps | | +12V | 0 | 1 | 29 | | Amps | | -12V | 0 | - | 0.3 | | Amps | | +5VSb | 0 | - | 2.5 | | Amps | - (1) The maximum combined load on +3.3V and +5V outputs shall not exceed 90W. - (2) Maximum continuous total DC output power should not exceed 350W. # 3<u>50W(雙組)</u> | Parameter | Min | Nom. | Max | Peak | Unit | |-----------|-----|------|-----|------|------| | +3.3V | 0 | - | 15 | | Amps | | +5V | 0 | - | 14 | | Amps | | +12V1 | 0 | - | 16 | 18 | Amps | | +12V2 | 0 | - | 16 | 18 | Amps | | -12V | 0 | - | 0.3 | | Amps | | +5VSb | 0 | - | 2.5 | | Amps | AUDIT:______<u>李復新_____CHECK:______DESIGN:_____H X X</u>____ - (1) The maximum combined load on +3.3V and +5V outputs shall not exceed 90W. - (2) The maximum combined load on +12V1 and +12V2 outputs shall not exceed 350W. - (3) Maximum continuous total DC output power should not exceed 350W. # 2.2.3 Load Range # 400W(單組) | Parameter | Min | Nom. | Max | Peak | Unit | |-----------|-----|------|-----|------|------| | +3.3V | 0 | - | 17 | | Amps | | +5V | 0 | 1 | 14 | | Amps | | +12V | 0 | 1 | 33 | | Amps | | -12V | 0 | - | 0.3 | | Amps | | +5VSb | 0 | - | 2.5 | | Amps | - (1) The maximum combined load on +3.3V and +5V outputs shall not exceed 90W. - (2) Maximum continuous total DC output power should not exceed 400W. # 400W(雙組) | Parameter | Min | Nom. | Max | Peak | Unit | |-----------|-----|------|-----|------|------| | +3.3V | 0 | - | 17 | | Amps | | +5V | 0 | - | 14 | | Amps | | +12V1 | 0 | 1 | 18 | | Amps | | +12V2 | 0 | 1 | 18 | | Amps | | -12V | 0 | - | 0.3 | | Amps | | +5VSb | 0 | - | 2.5 | | Amps | - (1) The maximum combined load on +3.3V and +5V outputs shall not exceed 90W. - (2) The maximum combined load on +12V1 and +12V2 outputs shall not exceed 400W. - (3) Maximum continuous total DC output power should not exceed 400W. ## 2.2.4 Load Range # 450W(單組) | Parameter | Min | Nom. | Max | Peak | Unit | |-----------|-----|------|-----|------|------| | +3.3V | 0 | - | 19 | | Amps | | +5V | 0 | 1 | 14 | | Amps | | +12V | 0 | - | 37 | | Amps | | -12V | 0 | - | 0.3 | | Amps | | +5VSb | 0 | - | 2.5 | | Amps | - (1) The maximum combined load on +3.3V and +5V outputs shall not exceed 90W. - (2) Maximum continuous total DC output power should not exceed 450W. # 450W(雙組) | Parameter | Min | Nom. | Max | Peak | Unit | |-----------|-----|------|-----|------|------| | +3.3V | 0 | - | 19 | | Amps | | +5V | 0 | - | 14 | | Amps | | +12V1 | 0 | - | 20 | | Amps | | +12V2 | 0 | 1 | 20 | | Amps | | -12V | 0 | - | 0.3 | | Amps | | +5VSb | 0 | - | 2.5 | | Amps | - (1) The maximum combined load on +3.3V and +5V outputs shall not exceed 90W. - (2) The maximum combined load on +12V1 and +12V2 outputs shall not exceed 450W. - (3) Maximum continuous total DC output power should not exceed 450W. ## 2.3 Output Ripple # 2.3.1 Ripple regulation | Parameter | Ripple&Noise | Unit | |-----------|--------------|-------| | +3.3V | 50 | mVp-p | | +5V | 50 | mVp-p | | +12V | 120 | mVp-p | | -12V | 120 | mVp-p | | +5VSb | 50 | mVp-p | #### 2.3.2 Definition The ripple voltage of the outputs shall be measured at the pins of the output connector when terminated in the load impedance specified in figure1.Ripple and noise are measured at the connectors with a 0.1uF ceramic capacitor and a 10uF electrolytic capacitor to simulate system loading. Ripple shall be measured under any condition of line voltage, output load, line frequency, operation temperature. ## 2.3.3 Ripple voltage test circuit Figure 1. Ripple voltage test circuit AUDIT: 李復新 CHECK: DESIGN: H X X ENP7100-S SPEC REV: 3.0 4 OF 11 2012/02/16 #### 2.4 Overshoot Any overshoot at turn on or turn off shall be less 10% of the nominal voltage value, all outputs shall be within the regulation limit of section 2.0 before issuing the power good signal of section 5.0. #### 2.5 Efficiency Power supply efficiency typical 87% for 350W,400W,450W, 85% for 300W at normal AC main voltage and full load on all outputs. #### 2.6 Remote on/off control When the logic level "PS-ON" is low, the DC outputs are to be enabled. When the logic level is high or open collector, the DC outputs are to be disabled. #### 3.0 PROTECTION # 3.1 Over-power protection The power supply will be shutdown and latch off when output power over 110% ~ 160% of rated DC output. # 3.2 Over current protection The power supply shall have current limit to prevent the +3.3V,+5V,and +12V1,+12V2 outputs from exceeding the values shown in the following Table. If the current limits are exceeded the power supply shall shutdown and latch off. # 300W(單組) | Voltage | Over Current Limit (lout limit) | |---------|---------------------------------| | +12V | 27A minimum; 37A maximum | | +5V | 20A minimum; 50A maximum | | +3.3V | 20A minimum; 50A maximum | #### 300W(雙組) | Voltage | Over Current Limit (lout limit) | |---------|---------------------------------| | +12V1 | 20A minimum; 40A maximum | | +12V2 | 20A minimum; 40A maximum | | +5V | 20A minimum; 50A maximum | | +3.3V | 20A minimum; 50A maximum | # 350W(單組) | Voltage | Over Current Limit (Iout limit) | |---------|---------------------------------| | +12V | 31A minimum; 41A maximum | | +5V | 20A minimum; 50A maximum | | +3.3V | 20A minimum; 50A maximum | AUDIT: CHECK: DESIGN: HXX5 OF 11 2012/02/16 # 350W(雙組) | Voltage | Over Current Limit (lout limit) | |---------|---------------------------------| | +12V1 | 20A minimum; 40A maximum | | +12V2 | 20A minimum; 40A maximum | | +5V | 20A minimum; 50A maximum | | +3.3V | 20A minimum; 50A maximum | # 400W(單組) | Voltage | Over Current Limit (lout limit) | |---------|---------------------------------| | +12V | 35A minimum; 45A maximum | | +5V | 20A minimum; 50A maximum | | +3.3V | 20A minimum; 50A maximum | ## 400W(雙組) | Voltage | Over Current Limit (lout limit) | |---------|---------------------------------| | +12V1 | 20A minimum; 40A maximum | | +12V2 | 20A minimum; 40A maximum | | +5V | 20A minimum; 50A maximum | | +3.3V | 20A minimum; 50A maximum | # 450W(單組) | Voltage | Over Current Limit (Iout limit) | |---------|---------------------------------| | +12V | 39A minimum; 49A maximum | | +5V | 20A minimum; 50A maximum | | +3.3V | 20A minimum; 50A maximum | # 450W(雙組) | Voltage | Over Current Limit (lout limit) | |---------|---------------------------------| | +12V1 | 22A minimum; 40A maximum | | +12V2 | 22A minimum; 40A maximum | | +5V | 20A minimum; 50A maximum | | +3.3V | 20A minimum; 50A maximum | # 3.3 Over voltage protection The over voltage sense circuitry and reference shall reside in packages that are separate and distinct from the regulator control circuity and reference. No single point fault shall be able to cause a sustained over voltage condition on any or all outputs. The supply shall provide latch-mode over voltage protection as defined in Table. | Output | Minimum | Nominal | Maximum | Unit | |----------|---------|---------|---------|-------| | +12 VDC | 13.4 | 15.0 | 16.5 | Volts | | +5 VDC | 5.74 | 6.3 | 7.0 | Volts | | +3.3 VDC | 3.76 | 4.2 | 5.1 | Volts | #### 3.4 Short circuit An output short circuit is defined as any output impedance of less than 0.1 ohms. The power supply shall shut down and latch off for shorting the +3.3 VDC,+5 VDC,or+12 VDC rails to return or any other rail. Shorts between main output rails and +5VSB shall not cause any damage to the power supply. The power supply shall either shut down and latch off or fold back for shorting the negative rails.+5VSB must be capable of being shorted indefinitely, but when the short is removed, the power supply shall recover automatically or by cycling PS_ON#. The power supply shall be capable of withstanding a continuous short-circuit to the output without damage or overstress to the unit ### 3.5 No load operation No damage or hazardous condition should occur with all the DC output connectors disconnecte from the load. The power supply may latch into the shutdown state. ### 3.6 Under voltage protection. In an under voltage fault occurs, the supply will latch all DC outputs into a shutdown state when +12V,+5V & +3.3V outputs under 85% of it's maximum value. #### 4.0 TIMING # 4.1 Signal timing drawing Figure 2 is a reference for signal timing for main power connector signals and rails. Figure 2. PS-OK Timing Sequence - (1)T2: Rise time (0.2ms~20ms) - (2)T3: Power good signal turn on delay time (100ms~500ms) - (3)T4: Power good signal turn off delay time (1ms min) - (4)T5: Rise time (10ms max) #### 4.2 .Output Transient Response Table 13. summarizes the expected output transient step sizes for each output. The transient load slew rate is =1.0A/us. AUDIT: 李復新 CHECK: DESIGN: HXX2012/02/16 **Table 13. DC Output Transient Step Sizes** | | Max.step size | Max.step size | |---------|------------------------|---------------------------------------| | Output | (% of rated output amp | s per Sec 3.2.3) ⁽¹⁾ (amps | | +12VDC | 40% | | | +5VDC | 30% | | | +3.3VDC | 30% | | | -12VDC | | 0.1A | | +5VSB | | 0.5A | ⁽¹⁾ For example, for a rated +5 VDC output of 18A, the transient step would be 30% x 18A=5.4A Output voltages should remin within the remain within the regulation limits of Section 2.1, and the power supply should stable when subjected to load transients per Table 13. from any steady state load, including any or all of the following conditions: Simultaneous load steps on the +12 VDC,+5 VDC,and +3.3 VDC outputs (all steps occurring in the same direction) Load-changing repetition rate of 50 Hz to 10 kHz AC input range per Section 1.0 ## 4.3 Hold up time When the power loss its input power, it shall maintain 16ms at full load in regulation for 300W limit at normal input voltage. (AC:115V/60Hz or 230V/50Hz) When the power loss its input power, it shall maintain 16ms at 75% load in regulation for 350W,400W,450W limit at normal input voltage. (AC:115V/60Hz or 230V/50Hz) ## 5.0 ENVIRONMENT ## 5.1 Operation | Temperature | 0 to 50 °C (300W-400W) | |-------------------|------------------------| | Relative Humidity | to 85%,on-condensing | | Temperature | 0 to 40 °C (450W) | |-------------------|----------------------| | Relative Humidity | to 85%,on-condensing | #### 5.2 Shipping and Storage | Temperature | -20 to 90°C | |-------------------|-----------------------| | Relative Humidity | to 95%,non-condensing | ### 5.3 Altitude | Operating | 2000m | |-----------|-------| | Storage | 3000m | ## **☞** 6.0 SAFETY ## 6.1 Underwriters Laboratory (UL) recognition. The power supply designed to meet UL 60950 | AUDIT: | <u>李復新</u> | CHECK: | | DESIGN: | <u>H X X</u> | |--------------|--------------|--------|---------|---------|--------------| | ENP7100-S SI | PEC REV: 3.0 | | 8 OF 11 | | 2012/02/16 | ## 7.0 ELECTROMAGNETIC COMPATIBILITY (EMC) - 7.1 ELECTROSTATIC DISCHARGE (ESD) IEC 61000-4-2(EN 61000-4-2). - 7.2 RADIATED SUSCEPTIBILTY IEC 61000-4-3(EN 61000-4-3). - 7.3 ELECTRICAL FAST TRANSIENT / BURST (EFT/B) IEC 61000-4 -4(EN 61000-4-4). - 7.4 SURGE IEC 61000-4-5(EN 61000-4-5). - 7.5 CONDUCTED SUSCEPTIBILTY IEC 61000-4-6(EN 61000-4-6). - 7.6 POWER FREQUENCY MAGNETIC FIELD IEC 61000-4-8(EN 61000-4-8). - 7.7 VOLTAGE DIPS IEC 61000-4-11(EN 61000-4-11). - 7.8 VOLTAGE FLUCTUATIONS IEC 61000-3-3 (EN 61000-3-3). - 7.9 HARMONIC CURRENT EMISSION IEC61000-3-2(EN 61000-3-2). - 7.10 EN55032:Class B Radio interference (CISPR 22). - 7.11 ANSI C63.4-2009 / FCC Part 15 Subpart B / ICES-003 Issue 5 Class B 115VAC operation. #### # 8.1 MTBF (mean time between failures) calculation The demonstrated MTBF shall be 100,000 hours of continuous operation at 25 °C of full load at normal AC input. The MTBF of the power supply shall be calculated in accordance with MIL-HDBK-217F. The DC FAN is not included. #### 9.0 MECHANICAL REQUIREMENTS # 9.1 Physical dimension (線材組合&外露長度僅供參考,可根據客戶要求更改或新增。) A型, Dim (L125*W100*H77) D型, Dim (L125*W100*H77) AUDIT:______李復新_____CHECK:_______DESIGN:_____H X X___ F型, Dim (L125*W100*H63.5) H型, Dim (L125*W100*H63.5) J型, Dim (L125*W100*H63.5) 李復新 AUDIT:____ CHECK: DESIGN:____ HXX # 9.2 Connectors (INTEL approved equivalent) # P1 connector (Molex 39-01-2200 or equivalent) | 20AWG wire | Signal | Pin | Pin | Signal | 20AWG wire | |-------------|-----------|----------------------|-----|--------|------------| | Orange | +3.3V | 11 1 | 1 | +3.3V | Orange | | Orange(22AV | 3.3 sense | | ı | T3.3V | Orange | | Blue | -12VDC | 12 | 2 | +3.3V | Orange | | Black | COM | 13 | 3 | СОМ | Black | | Green | PS-ON | 14 | 4 | +5VDC | Red | | Black | COM | 15 | 5 | СОМ | Black | | Black | COM | 16 | 6 | +5VDC | Red | | Black | СОМ | 17 | 7 | СОМ | Black | | White | NC | 18 | 8 | POK | Grey | | Red | +5VDC | 19 | 9 | +5VSB | Purple | | Red | +5VDC | 20 | 10 | +12VDC | Yellow | # P3,P4(AMP 1-480424-0 or Molex 8981-04P or equivalent) # P5 (AMP 171822-4 or equivalent) | | | / | | | <u> </u> | |---------------|--------|-----|-----|--------|------------| | 20 AWG wire | Signal | Pin | Pin | Signal | 22AWG wire | | Yellow | +12VDC | 1 | 1 | +5VDC | Red | | Black | СОМ | 2 | 2 | СОМ | Black | | Black | СОМ | 3 | 3 | СОМ | Black | | Red(optional) | +5VDC | 4 | 4 | +12VDC | Yellow | # P2 Optional Connector (Molex 39-01-2060 or equivalent) | 20 AWG wire | Signal | Pin | Pin | Signal | 20AWG wire | |-------------|--------|-----|-----|--------|------------| | Black | GND | 1 | 3 | +12V2 | Yellow | | Black | GND | 2 | 4 | +12V2 | Yellow | # **P6,P7** (optional) Serial ATA Power Connector (Molex* 88751 or equivalent) | 18 /20AWG wire | Signal | Pin | |----------------|--------|-----| | Orange | +3.3V | 5 | | Black | GND | 4 | | Red | +5V | 3 | | Black | GND | 2 | | Yellow | +12V | 1 | ## **10. FAN SPEED CONTROL** Fan voltage varies with the ambient temperature and/or output power. AUDIT:___ 李復新 CHECK: DESIGN:_